Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization.

نویسندگان

  • Francis G Woodhouse
  • Raymond E Goldstein
چکیده

Many cells exhibit large-scale active circulation of their entire fluid contents, a process termed cytoplasmic streaming. This phenomenon is particularly prevalent in plant cells, often presenting strikingly regimented flow patterns. The driving mechanism in such cells is known: myosin-coated organelles entrain cytoplasm as they process along actin filament bundles fixed at the periphery. Still unknown, however, is the developmental process that constructs the well-ordered actin configurations required for coherent cell-scale flow. Previous experimental works on streaming regeneration in cells of Characean algae, whose longitudinal flow is perhaps the most regimented of all, hint at an autonomous process of microfilament self-organization driving the formation of streaming patterns during morphogenesis. Working from first principles, we propose a robust model of streaming emergence that combines motor dynamics with both microscopic and macroscopic hydrodynamics to explain how several independent processes, each ineffectual on its own, can reinforce to ultimately develop the patterns of streaming observed in the Characeae and other streaming species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells

After trypsinization and replating, BHK-21 cells spread and change shape from a rounded to a fibroblastic form. Time-lapse movies of spreading cells reveal that organelles are redistributed by saltatory movements from a juxtanuclear position into the expanding regions of cytoplasm. Bidirectional saltations are seen along the long axes of fully spread cells. As the spreading process progresses, ...

متن کامل

Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin.

Cytochalasin B reversibly inhibits cytoplasmic streaming in both Nitella and Avena cells. Colchicine, on the other hand, has no effect on streaming in either plant; nor does colchicine prevent the recovery of streaming after cytochalasin is withdrawn. The inhibition of protein synthesis by cycloheximide has no effect on either streaming itself or on the recovery of streaming after cytochalasin ...

متن کامل

The role of microfilaments in cytoplasmic streaming in Drosophila follicles.

During the last phase of oogenesis in Drosophila, nurse cell cytoplasm can be seen to be streaming into the growing oocyte when visualized in time-lapse films. This process can be reversibly inhibited by cytochalasins. The distribution of F-actin filaments in the nurse cells has been studied by staining with rhodamine-conjugated phalloidin. At the beginning of cytoplasmic streaming (stage 10B) ...

متن کامل

CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules.

CLASP proteins associate with either the plus ends or sidewalls of microtubules depending on the subcellular location and cell type. In plant cells, CLASP's distribution along the full length of microtubules corresponds with the uniform anchorage of microtubules to the cell cortex. Using live cell imaging, we show here that loss of CLASP in Arabidopsis thaliana results in partial detachment of ...

متن کامل

Microfilament Distribution in Maize Meiotic Mutants Correlates with Microtubule Organization.

Microtubules and microfilaments often codistribute in plants; their presumed interaction can be tested with drugs although it is not always clear that these are without side effects. In this study, we exploited mutants defective in meiotic cell division to investigate in a noninvasive way the relationship between the two cytoskeletal elements. By staining unfixed, permeabilized cells with rhoda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 35  شماره 

صفحات  -

تاریخ انتشار 2013